qat.hardware.DefaultHardwareModel

class qat.hardware.DefaultHardwareModel(gate_times=None, gate_noise=None, idle_noise=None, channel_repr=ChannelRepresentations.KRAUS)

A default hardware model, with perfect gates and possibility to add idling noise and gate noise. It contains:

  • gates: instantaneous gates if nothing specified in constructor

  • environment: noise on idle qubits or nothing if nothing specified

Parameters
  • gate_times (dict<str, float> or dict<str, dict<tuple<int>, float>> or dict<str, lambda<param, float>> or dict<str, dict<tuple<int>, lambda<param, float>>) – contains duration (possibly parametric) of each gate (possibly qubit-wise)

  • gate_noise (dict<str, ParametricQuantumChannel or lambda<args, QuantumChannel>>, optional) – specifies the noise to be (optionally) appended after each gate application. Defaults to None (no gate noise).

  • idle_noise (dict<int, list<ParametricQuantumChannel>> or list<ParametricQuantumChannel>, optional) – specifies the noise to be applied to idle qubits. Default to None (no idle noise).

  • channel_repr (qat.quops.ChannelRepresentations, optional) – specifies quantum channel representation (e.g Kraus representation or Pauli transfer matrix). Defaults to ChannelRepresentations.KRAUS.

gates_specification

specifies the gates of this hardware.

Type

GatesSpecification

gate_noise

specifies the noise to be (optionally) appended after each gate application.

Type

dict<str, ParametricQuantumChannel or lambda<args, QuantumChannel>>

idle_noise

specifies the noise to be applied to idle qubits.

Type

dict<int, list<ParametricQuantumChannel>> or list<ParametricQuantumChannel>

params_specification

specifies the parameters that are used in the Schedule fed to an analog QPU.

Type

dict<str, Parameter>

jump_operators

list of Lindblad jump operators (for analog QPUs).

Type

list<Observable>

cleanup_jump_operators()

Remove constant jump operators, if any, since they don’t affect the dynamics

shift_jump_operators(shift: Union[List[complex], complex]) Observable

Shift jump operators \(L_k\) by complex numbers \(\alpha_k\): \(L_k \rightarrow L_k - \alpha_k\).

To maintain the same Lindblad equation, the hamiltonian must be compensated: \(H \rightarrow H + \tilde H\) with

Parameters

shift (complex or list<complex>) – a complex scalar shift (same for all jump operators) or a list of such (one for each jump operator)

Returns

compensation to the hamiltonian \(\tilde H\).

Return type

Observable

Raises

ValueError – if no jump operator