Executing quantum programs
This framework provides Quantum Processing Units (QPU) to execute any quantum job. Our QPUs are listed in the qat.qpus
module. Quantum Circuit
, Schedule
, etc. must be lifted into a quantum Job
by
using their to_job()
method to be executable on the QPU. The job object (detailed in the job section)
contains additional information, such as:
number of shots
what should be measures (sampling, observable)
etc.
A job can be submitted to a QPU by:
A job can be executed using the submit()
method of the selected QPU
from qat.qpus import get_default_qpu
from qat.lang import qrout, H, CNOT
@qrout
def bell_pair():
H(0)
CNOT(0, 1)
job = bell_pair.to_job()
result = get_default_qpu().submit(job)
for sample in result:
print(f"{sample.state}: {sample.probability}")
|00>: 0.4999999999999999
|11>: 0.4999999999999999
A job can be executed using the run()
method
from qat.lang import qrout, H, CNOT
@qrout
def bell_pair():
H(0)
CNOT(0, 1)
job = bell_pair.to_job()
result = job.run() # Use default QPU
for sample in result:
print(f"{sample.state}: {sample.probability}")
|00>: 0.4999999999999999
|11>: 0.4999999999999999
The QPU can be selected using a Python context
from qat.qpus import CLinalg
from qat.lang import qrout, H, CNOT
@qrout
def bell_pair():
H(0)
CNOT(0, 1)
job = bell_pair.to_job()
with CLinalg():
result = job.run()
for sample in result:
print(f"{sample.state}: {sample.probability}")
|00>: 0.4999999999999999
|11>: 0.4999999999999999
Any QPU of this framework can be extended using plugins. A plugin will extend the capabilities of a QPU, and can be used, for instance:
to compile jobs before running them on the QPU - the extended QPU won’t have any gate set limitation, topology limitation, etc.
to support variational computing
etc.
This framework provides plugins to support Variational computing, such as ScipyMinimizePlugin
. This plugin tries
to minimize the average value of the observable
A job can be executed using the submit()
method of the selected QPU
from qat.qpus import get_default_qpu
from qat.plugins import ScipyMinimizePlugin
from qat.lang import qrout, RX
from qat.core import Observable
@qrout
def circuit(theta):
RX(theta)(0)
job = circuit.to_job(observable=Observable.z(0))
qpu = ScipyMinimizePlugin() | get_default_qpu()
result = qpu.submit(job)
print("Average value:", result.value)
print("Angles:", result.parameter_map)
Average value: -0.99999999999993
Angles: {'theta': 3.1415930277598654}
A job can be executed using the run()
method
from qat.plugins import ScipyMinimizePlugin
from qat.lang import qrout, RX
from qat.core import Observable
@qrout
def circuit(theta):
RX(theta)(0)
job = circuit.to_job(observable=Observable.z(0))
with ScipyMinimizePlugin():
result = job.run()
print("Average value:", result.value)
print("Angles:", result.parameter_map)
Average value: -0.9999999999999196
Angles: {'theta': 3.1415930545241206}