Graph Colouring Generator
The GraphColouringGenerator
can be used to generate batches to solve the Graph Colouring
problem on an input graph. Some examples using different types of job generation and QPUs on some simple graphs are shown below:
QAOA job generation
import networkx as nx
import numpy as np
from qat.generators import GraphColouringGenerator
from qat.plugins import ScipyMinimizePlugin
from qat.qpus import get_default_qpu
graph = nx.Graph()
graph.add_nodes_from(np.arange(4))
graph.add_edges_from([(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)])
scipy_args = dict(method="COBYLA", tol=1e-5, options={"maxiter": 200})
graph_colouring_application = GraphColouringGenerator(job_type="qaoa") | (ScipyMinimizePlugin(**scipy_args) | get_default_qpu())
combinatorial_result = graph_colouring_application.execute(graph, 3)
print(combinatorial_result.subsets)
[[2], [1], [0, 3]]
<stdin>:13: FutureWarning: adjacency_matrix will return a scipy.sparse array instead of a matrix in Networkx 3.0.
The parsed combinatorial result can also be displayed with networkx using the
display()
method:
combinatorial_result.display()

Annealing job generation
import networkx as nx
import numpy as np
from qat.generators import GraphColouringGenerator
from qat.qpus import SimulatedAnnealing
from qat.core import Variable
from qat.opt.sqa_best_parameters import sqa_best_parameters_dicts
graph = nx.Graph()
graph.add_nodes_from(np.arange(4))
graph.add_edges_from([(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)])
# Create a temperature function
t = Variable("t", float)
temp_max = sqa_best_parameters_dicts["GraphColouring"]["temp_max"]
temp_min = sqa_best_parameters_dicts["GraphColouring"]["temp_min"]
temp_t = temp_min * t + temp_max * (1 - t) # annealing requires going from a high to a very low temperature
n_steps = 5000
graph_colouring_application = GraphColouringGenerator(job_type="annealing") | SimulatedAnnealing(temp_t, n_steps)
combinatorial_result = graph_colouring_application.execute(graph, 3)
<stdin>:20: FutureWarning: adjacency_matrix will return a scipy.sparse array instead of a matrix in Networkx 3.0.
Similarly, the function display()
method can be used
to display the result:
combinatorial_result.display()

Scheduling job generation
import networkx as nx
import numpy as np
from qat.generators import GraphColouringGenerator
graph = nx.Graph()
graph.add_nodes_from(np.arange(4))
graph.add_edges_from([(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)])
graph_colouring_generator = GraphColouringGenerator(job_type="schedule")
schedule_batch = graph_colouring_generator.generate(None, graph, 3)
Currently the analog qpus that can be used to execute the schedule are only available in the QLM. Therefore the generated schedule_batch here can be passed to a QLM for execution.
- class qat.opt.generators.GraphColouringGenerator(job_type='qaoa')
Specialization of the CombinatorialOptimizerGenerator class for generator that solves the Graph Colouring problem
- Parameters
job_type (str) – The job type of the batches to be generated. Can be either “qaoa”, “schedule” or “annealing”
- generate(specs, graph, number_of_colours, **kwargs)
Generate a batch that solves the Graph Colouring problem on a particular graph. The batch can then be sent to a computational stack of plugins and QPU to be executed. The result will be parsed into
GraphPartitioningResult
that contains interpretable information- Parameters
specs (
HardwareSpecs
) – will be used to run the jobgraph (networkx.Graph) – a networkx graph to run the Graph Colouring algorithm on
number_of_colours (int) – the number of colours
- Returns
A parsed result of combinatorial optimization problem
- Return type